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Abstract—A new class of neural prosthetic systems aims to assist
disabled patients by translating cortical neural activity into control
signals for prosthetic devices. Based on the success of proof-of-con-
cept systems in the laboratory, there is now considerable interest
in increasing system performance and creating implantable elec-
tronics for use in clinical systems. A critical question that impacts
system performance and the overall architecture of these systems is
whether it is possible to identify the neural source of each action po-
tential (spike sorting) in real-time and with low power. Low power
is essential both for power supply considerations and heat dissi-
pation in the brain. In this paper we report that state-of-the-art
spike sorting algorithms are not only feasible using modern com-
plementary metal oxide semiconductor very large scale integration
processes, but may represent the best option for extracting large
amounts of data in implantable neural prosthetic interfaces.

Index Terms—analog-to-digital converter (ADC), brain–ma-
chine interfaces (BMI), low-power, neural prosthetics, spike
sorting.

I. INTRODUCTION

IMPLANTABLE arrays of hundreds of microelectrodes
hold promise for fundamental neuroscience research and

interfaces for patients with debilitating neuromuscular deficits.
While modulations in the low frequency neuronal oscillations
may contain useful information, the primary mechanism of
information transmission in recordings of extracellular cortical
signals is changes in the rate of pulse-like action potentials
(“spikes”) generated by individual neurons. Cortical electrode
arrays are implanted neurosurgically, but the precise distance
between each electrode tip and surrounding neurons is uncon-
trolled. Hence, implantable electrodes are manufactured with
moderate impedances (e.g., a few hundred kiloohms) to ensure
that at least one neuron is typically sensed. However, such
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electrodes often record action potentials from more than one
neuron. We have shown previously that even for a simple clas-
sification task, performance can be increased by distinguishing
the action potentials of different neurons detected on the same
electrode [1]. Hence, an interface that discards this information
will compromise system performance, at least to some extent
[2].

Unfortunately, the transmission of this neural information out
of the implanted site can be a difficult technical challenge. For
neurophysiological studies, a single wire per electrode is bonded
to a micro-connector mounted on the skull. However, for clin-
ical applications with larger numbers of electrodes, the connec-
torization will become unmanageable despite miniaturization.
Eventually a wireless interface will be the most practical alter-
native.

Herein lies the problem: while the fundamental information
gathered by the array is the sequence of spike times for each
neuron that can be sensed, the current approach of attempting to
extract this information involves sampling the signal from each
electrode at a rate of 10–30 kHz and transmitting the data to a
signal processing system for analysis. As has been previously
observed [3], for a sampling rate of 25 kHz, 12-bit digitization,
and 96 electrodes, this yields an aggregate data rate of nearly 29
Mb/s. While this data rate is comparable to those achieved by the
increasingly ubiquitous high-speed wireless network links, the
power requirements for a clinical application necessitate battery
lifetimes measured in years, as opposed to the hours that such
high-bandwidth devices afford. Some form of bandwidth reduc-
tion is thus essential.

Two approaches for achieving this bandwidth reduction have
been proposed. In [4], the waveform from each electrode is
compressed using a lossy wavelet encoding scheme. A 30-fold
data reduction is demonstrated by thresholding wavelet coeffi-
cients at the estimated noise level and using a lossless run-length
coding. The shapes of the action potentials are preserved and
postprocessing can be used to determine which neuron spiked
for any given activity on an electrode. Still, the resultant data rate
may be rather high in the context of a battery powered device,
particularly in brain regions with high spike rates. Furthermore,
the effect of the compression loss on the ability to distinguish
spikes from different neurons is unknown.

Alternatively, the signal on each electrode could be reduced
to simply the times at which it exceeded a threshold set at a
multiple of a running estimate of its root mean square (rms)
value [3]. Based on biophysical spiking constraints, the data rate
per electrode (with two sensed neurons) would be a maximum 2
kb/s, 150 times smaller than the 300 kb/s raw signal. However,
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Fig. 1. Extraction of neural signals. a: General block diagram of data extraction from cortical neural recordings for a prosthetic interface: Broad-band signal
[(b) 1 s of data; (c) 2 ms, showing a spike] recorded on electrode is first digitally sampled. Then, a feature extraction process reduces the dimensionality of the
data [(d) spike waveforms in an optimized three dimensional subspace are easy to distinguish]. In this reduced signal space, the activity of individual neurons
can be differentiated from each other and from background noise. Optimally, only the spiking times of neurons (e) are finally transmitted from the device to the
downstream system which decodes neural activity into control signals for a prosthetic device.

the cost of such data reduction is that the information about
which neuron produced which spike has been lost.

In this paper, we investigate the feasibility of a third alterna-
tive, namely implementing digital signal processing on the in-
terface silicon so that spike sorting operations can be executed
prior to transmitting data from the implant site. This approach
achieves nearly the same transmission bandwidth floor of the
threshold detector while achieving the neuron-by-neuron dis-
crimination of the compression approach. We choose a modern
digital spike sorting algorithm and demonstrate that the number
of computational operations required, and hence the energy con-
sumed when using standard CMOS VLSI, make an implantable
spike sorting front-end realistic. This result holds for arrays with
very large numbers of electrodes. Placing such a device into
the context of other suggested techniques, this implies that ag-
gressive bandwidth reduction, comparable to that achieved by
merely recording threshold crossings, is possible without loss
of neural information at a power consumption suitable for im-
plantable devices.

II. METHODOLOGY

A. Spike Sorting Methodology

Certain features are common to nearly all spike sorting al-
gorithms, as shown in Fig. 1. The signal from each electrode
must be impedance (down) converted, filtered and amplified
(Fig. 1(a), triangle). Additionally, because the fundamental data
desired is the timing of action potentials, some form of conver-
sion, whether a single comparator or more complex, from the

analog waveform to a digital signal is required. Importantly, in-
creased complexity in digitization can enable more information
to be extracted from the signal. As waveforms are typically sam-
pled at a rate much higher than the spiking rates of neurons, data
reduction typically follows digitization. Then, detected spikes
are classified into feature-derived categories corresponding to
individual neurons or multiunit activity. Finally, the time and
neural identity of each detect spike must be transmitted out.

B. Spike Sorting Algorithms Selected

In this paper, in order to demonstrate the feasibility of high
quality real-time spike sorting in implanted hardware, we de-
scribe the implementation of what we believe to be both one of
the best and most computationally intensive spike sorting algo-
rithms available. We intentionally sought a state-of-the-art spike
sorting algorithm, which is uncompromising in spike sorting
quality and relies on principled machine learning techniques,
to help assure that our power estimates would not be overly op-
timistic. Moreover, we routinely and productively use the algo-
rithm presented to perform real-time neural prosthetic system
experiments [1], [5], [6].

Fig. 2 depicts the spike sorting system developed by Sahani
[7]. For real time classification, the data must first be precondi-
tioned, using a high-pass filter (HPF) to eliminate the low-fre-
quency local field potential (LFP). Spike times are then identi-
fied using a threshold identified in training. Spike event wave-
forms, small, ms windows of data around a threshold-
crossing event, are aligned to their exact peaks through an inter-
polation technique. These events are then projected into a noise-
whitened robust principal components analysis (PCA) space, as
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Fig. 2. Block diagram of the Sahani algorithm. Processing associated with one
electrode is illustrated, such processing must be performed for all electrodes.

will be explained in the next paragraph, followed by a maximum
a posteriori (MAP) classification for assignment to a particular
neuron or background-noise class.

Parameter training requires a computational pathway sepa-
rate from real-time classification. For training, a 1 min segment
of the preconditioned data from a given electrode is used. The
rms value of this data is calculated and the threshold used for
event identification is set to three times this value. Using this
threshold, spike events are identified and aligned as in real-time
classification. In parallel, segments of signal which do not
exceed threshold are used to estimate noise characteristics. This
characterization of the background noise enables the projection
of the spike event waveforms into a robust noise-whitened prin-
cipal component analysis (NWrPCA) space. During training,
relaxation expectation-maximization (REM) and cascading
model selection (CMS) are then used to cluster the data and fit
the clusters to a mixture model. The mixture model represents
the prior probability of observing each neuron identified, as
well as the probability of threshold crossings corresponding to
noise rather than neural activity.

III. POWER ESTIMATES

In this section, we address the power consumption of the two
major computational elements of a spike sorting system: analog
to digital conversion (ADC) and digital training and classifica-
tion.

A. ADC

The advanced spike sorting algorithms we will describe ne-
cessitate that the spike detection circuit transform the signal
from the analog to the digital domain. On our electrode array
(100-electrode silicon array, Cyberkinetics, Inc., Foxborough,
MA), we observe a mean dynamic range of signal amplitude of

647 . With a mean rms noise level of 11 , this corresponds
to a dynamic range to noise ratio (DNR) of about 35 dB. Given
this level, a conservative requirement for analog-to-digital con-
version (ADC) resolution would be 8 bits. Hence, the digitiza-
tion process consumes a significant portion of the total power of
the proposed system. As a result, in this section, we argue that,
for the benchmark system of 100 channels, each with a band-
width of 30 kHz and full-scale input-signal voltage equal to the
ADC supply voltage, 100 is an achievable upper bound on
ADC power consumption.

Many low-power ADC designs have been implemented in
the past decade. For example, the successive approximation
ADC of [8] could be arrayed, yielding a 100-channel ADC
array with 7-bit resolution at 5 kHz bandwidth consuming 310

. Scaling this design using (1), as will be described in the
next paragraph, we might expect a 100 channel, 30-kHz, 7-bit
ADC in a 0.13- m technology to consume 650 .

However, a theoretical consideration of analog to digital con-
version suggests that significant reductions in energy consump-
tion are possible. The power consumption of low frequency and
moderate resolution converters (which typically use a succes-
sive approximation design), is constrained by (transistor
threshold voltage) mismatch. If we size the components such
that change in charge corresponding to the least significant bit is

times greater than the expected variation due to mismatch, as
shown in [9], the energy per step size for each pair of matching
critical transistors is bounded below by

Power
(1)

where is the number bits, BW is the bandwidth, , , ,
and are process parameters (transistor width, channel length,
total dopant concentration, and depletion depth), and is the
electron charge. Thus, the overall ADC energy per step size is
bounded by

Power
(2)

where is the number of pairs of matching critical tran-
sistors per comparator and is the number of comparators.

As a relevant example, let us chose , and assume
m, cm , one comparator

with 20 matching critical transistors, and that the ADC has a
resolution of 8 bits at 30 kHz. This yields an energy per step
size lower bound of

(3)

or

(4)

So a lower bound on the ADC power consumption is about 0.4
nW, or 40 nW for a 100 electrode array.

The four orders of magnitude difference between this value
and the result in [8] is largely due to assumptions in the deriva-
tion of the bound, including issues such as parasitic capaci-
tance, process variation, process-voltage-temperature corners,
and complications due to the required high magnitude of the
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input signal. Recent development in low-power ADC design
has leveraged the extremely power-efficient digital circuit, as
will be discussed in the next section, to “aid” the analog design
[10]. As a result, the power consumption of ADCs is expected
to be reduced by an order of magnitude using these digital cal-
ibration and compensation techniques. Hence, a converter con-
suming close to 1 with 8-bit resolution at 30 kHz, or 100

for 100 channels, should be achievable.

B. Digital Power Estimation Technique

We estimated the power requirements of spike sorting al-
gorithm described in Section II-B by recasting the operations
performed to simple instructions that can be implemented in
hardware. A detailed analysis of the algorithms was carried
out and approximate figures for the number of operations
(specifically adds and multiplies) required for each task were
obtained. Operation counts for some complex linear algebra
functions used in the algorithms, like matrix decompositions,
were taken from standard texts on numerical linear algebra
[11]. Operation counts were then translated to power using the
figure 1 mW/GOPS [12]. This figure is used as the standard
power consumption per operation for ASICs implemented in
0.13- m CMOS technology. Finally, to approximate power
usage from memory accesses, we simply double the power
from instruction execution [13]. The figures should be taken
as an “order of magnitude” indication. However, we believe
that these figures are indicative of the power consumption, and
thus achieve the objective of showing that these systems can be
implemented in an implantable neural prosthetic.

While we take the Sahani algorithm as a benchmark against
which other spike sorting algorithms can be measured, we also
consider a vastly simplified algorithm for comparing power con-
sumption. In training, we eliminated many of the key innova-
tions of the algorithm, noise whitening, background event dis-
tributions, and cascading model selection, and clustered in tra-
ditional PCA space using the common -means algorithm with
three clusters. In real-time classification, a minimum, Euclidean
distance metric is used to classify events into the -means/PCA
clusters. We refer to this simplified implementation as the ,
means/PCA spike sorting algorithm.

C. Training Power Consumption

We assumed that training need be conducted only once every
12 h for each electrode, based on our rough estimate of the rela-
tive stability of signals on our electrode array [1], implying that
for a 100-electrode array the training process for each electrode
can be allocated 432 s. Furthermore, immediately prior to each
electrode’s training period, a 1-min segment of its recent, fil-
tered neural data is stored in memory.

To obtain power estimates, it is simplest to fix some stochastic
training parameters. As the number of operations for training
depends on the number of threshold-crossings occurring within
the data set, we assumed that on average the training data set
contains 2000 such incidents. In addition, due to the fact that
clustering and statistical fitting algorithms are iterative by na-
ture, we assumed that convergence would be achieved within a
maximum of 20 iterations.

TABLE I
OPERATION ESTIMATES FOR ALGORITHM TRAINING

The number of required operations per electrode for various
parts of the Sahani and -means/PCA training algorithms are
listed in Table I. We see that training using the Sahani algo-
rithm requires approximately 6.10 operations per elec-
trode. With our previous assumption of 432 s of training time
per electrode, we can convert to a power number by the fol-
lowing expression:

Power
total ops

training time s
(5)

In order to account for memory accesses, we double the re-
sulting power number. Therefore, if performed over 12 h, for
100 electrodes, the total power requirements for training the Sa-
hani algorithm is approximately 2.8 , for -means/PCA,
approximately 1.3 .

D. Real-Time Classification Power Consumption

The classification process itself contributes relatively little
to the overall power consumption of real time spike sorting.
Most of the real-time computational burden is dominated by
the high-pass filter, thresholding, and the interpolation for peak
alignment of events which cross threshold.

We will assume that an IIR high-pass filter consisting of two
second order sections is used. The coefficients we used in our
simulations are the same as those of the 250-Hz-cutoff filter
of the commercially available Cerebus rack-mounted spike
sorting system manufactured by Cyberkinetics, Inc. Also, a
30-kHz sampling rate is assumed. The IIR filter necessitates
6.3 ops s electrode. Digital thresholding contributes
3 ops s electrode. Combined, these sections should
contribute about 1.32 electrode.

Let us assume a “worst–case classification complexity
scenario,” in which there are a total of 50 threshold crossing
events per second, coming from up to five neurons. In this case,
peak alignment (interpolating by a factor of 32 times), can be
expected to consume about 6.6 ops s electrode, corre-
sponding to 13 electrode. Following this, maximum a pos-
teriori classification requires about 4.8 ops electrode s,
corresponding to 0.096 electrode. A simplified classi-
fication, using only the minimum Euclidean distance to a
cluster (i.e., the traditional technique used in concert with

-means/PCA), requires 1.3 electrode. This cor-
responds to 0.026 electrode.

In data from a typical day of recording on our array, we ob-
serve a mean of 20–40 threshold crossings per second per elec-
trode. Hence, for neurons similar to those of the cortical region
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in which our array is implanted (dorsal premotor cortex), the ac-
tual number of computations and related power consumption for
real-time classification would be less than that described above.

As will be seen in the following section, it may be possible
to avoid interpolation with little degradation of performance.
If interpolation is eliminated, the biggest hurdle to be over-
come in real time classification is the design of a power effi-
cient high-pass filter for hundreds or thousands of simultaneous
channels. The problem is made more difficult by the fact that the
LFP is in the 0.5–100-Hz frequency range, while much of the
signal power is concentrated in the 1000–3000-Hz range. With
a sampling frequency of 30 kHz, the necessary transition band
is somewhat steep. Also, the amplitude of the LFP can be as
large as the amplitude of the most prominent spike waveform,
so the stopband attenuation must be fairly significant. An analog
filter with a bandpass characteristic equivalent to combining the
high-pass filter we require with the anti-aliasing filter used for
the ADC is presented in [14]. Interestingly, it consumes approx-
imately 1 , a figure comparable to our all-digital approach.
While digital processing benefits from process scaling, analog
filters remain a challenge, as the large capacitors and resistors
they require remain chip-area intensive. Hence, innovative so-
lutions to the filtering problem may well involve novel digital
processing.

IV. POWER AND ALGORITHM PERFORMANCE

In order for an implantable spike sorting system to be a useful
tool, it is important that it detect and classify spikes as accu-
rately as a nonimplanted real-time spike sorting system. The
purpose of this section is twofold: first, to briefly demonstrate
what we believe to be the excellent performance of the Sahani
algorithm relative to simpler real-time spike sorting techniques,
and second, to address the impact of a few design tradeoffs on
spike sorting performance.

Measuring the accuracy of a spike sorting system requires a
data set in which the time and correct classification of neural
spikes are known a priori. In the case of single electrode record-
ings, it is possible to experimentally gather such data by simul-
taneously recording from intra- and extra-cellular electrodes.
However, for microelectrode arrays, an equivalent technique has
not been demonstrated. Thus, one must create a synthetic data
set which closely resembles experimentally observed neural ac-
tivity. Several techniques for generating synthetic data to test
spike sorting algorithms have been reported ([15], [16]). In this
work, we use a simple three–component model fit to data exper-
imentally observed on our microelectrode array.

A. Generation of Realistic Synthetic Data

Neural activity recorded from acute or chronically implanted
electrodes varies tremendously depending on the recording
technique. For example, the location and type of neurons being
observed, the level of activity in the surrounding tissue, and
the impedance characteristics of the electrodes themselves can
result in large differences in signal quality, even among neurons
observed on different electrodes in a single-microelectrode
array. To capture this variability, we generate synthetic data to
correspond to data recorded on each of the electrodes in our

Fig. 3. Generating synthetic neural data. Mean waveform of each neuron
detected on an electrode becomes a template for a synthetic neuron. Spike
trains for each neuron are independently generated and added to the randomly
generated LFP and colored noise waveforms. Two neurons shown above
demonstrate that while spikes from a given neuron cannot overlap, those from
different neurons can.

96 electrode array (chronically implanted in a rhesus macaque
monkey, see [1] for details), and use the inherent variation in
number and quality of neural signals to probe performance
characteristics.

As depicted in Fig. 3, we modeled recorded signals as being
composed of the sum of three components: LFP oscillations,
colored noise, and action potentials. Thus, for a given electrode,
we fit an autoregressive (AR) model to the LFP observed in a
2-min segment of experimental data. Additionally, we used a
second AR model to emulate the colored noise remaining after
the high pass filtering process. Finally, we used mean wave-
forms found by spike sorting the data as action potential tem-
plates. Using spline interpolation of the templates to introduce
random jitter, we then placed spikes into the synthetic data. The
number of spiking events for each neuron was proportional to
the number observed in the experimental data. Spike times were
chosen randomly, with the constraint that two spikes from a par-
ticular neuron could not occur within 1.2 ms; spikes from dif-
ferent neurons were allowed to overlap. A sample of recorded
action potentials from one electrode of the array, and the syn-
thetic spikes generated to simulate them are shown in Fig. 4.

Error rates were obtained by training the spike sorting algo-
rithm on one set of synthetic data, and then classifying a second
set of synthetic data generated using the same model. By av-
eraging performance over synthetic data generated from each
electrode on the array on a given day, we can evaluate the im-
pact of performance tradeoffs on neural signals whose qualities
(number of neurons, similarity of spike waveforms, etc.) vary in
a way that is relevant to the environment of our microelectrode
array.

B. Algorithm Performance Assessment

The most important characteristic of any spike sorting algo-
rithm is its ability to accurately classify action potentials. How



ZUMSTEG et al.: POWER FEASIBILITY OF IMPLANTABLE DIGITAL SPIKE SORTING CIRCUITS FOR NEURAL PROSTHETIC SYSTEMS 277

Fig. 4. Recorded and synthetic spikes. (Left) Sample of spikes recorded from a
specific electrode, color coded by assignment to one of two neurons (solid lines)
or noise (dotted lines). (Right) Synthetic spikes generated for the electrode.
In the case of the recorded data (left), the color coding is generated by our
initial spike sorting process. In the case of the synthetic data, the color coding
corresponds to the known timing of generated spikes. SNR of the larger neuron
is 15.2 and that of the smaller is 4.3.

Fig. 5. SNR and classification error. Using a synthetic data set generated
to match the noise and neural activity statistics of a real recording session,
we evaluated the effect of spike SNR on the Sahani algorithm spike sorting
error rate. Aggregate error rate is the sum of false positive and false negative
classification errors normalized by the number of synthetic spikes generated.
Hollow circle represents a neuron which was not successfully classified due to
insufficient firing rate (0.3 spikes/s) during training (Data set H20041105).

well the algorithms perform this task depends on the character-
istics of the signal, the number of neurons, and how different
the waveforms are. We define the signal-to-noise ratio (SNR)
of an action potential waveform as the ratio of the mean peak
signal level to the standard deviation of the background noise
measured using segments of data not containing spikes. That is

(6)

where is the waveform of the th spike attributed to the
neuron. During the recording session on which we modeled our
synthetic data (H20 041 105), we classified, and thus generated
synthetic data corresponding to 176 neural units on 95 elec-
trodes (one electrode was unusable due to noise artifacts), with
an average firing rate of 20 spikes/s per unit, and a mean SNR
of 7.8 (18 dB).

In Fig. 5, the dots represent the aggregate error rate of spike
sorting using the Sahani algorithm: the number of false positive
and false negative classifications divided by the actual number
of synthetic spikes generated for a given neuron. Error rates

Fig. 6. K-means/PCA classification error. Performance of theK-means/PCA
algorithm is shown using the format of Fig. 5. Missed neurons (51) or error rates
of 100% or more (11) are depicted by hollow circles. Notice that in the case of
SNR larger than 15, when a neuron is correctly identified, classification can be
quite successful. Performance suffers greatly, however, for neurons with SNR
in the range of 5 to 20.

were generated for each synthetic neuron generated as described
above to imitate an actual neuron observed during the recording
session. Notice that for SNR lower than about 7, the ability of
the algorithm to correctly classify threshold-crossing events is
severely hindered. Similar performance has been reported pre-
viously [15], [16]; intuitively, as shown in Fig. 4, it is quite
difficult to visually distinguish between noise events and low
SNR spikes. However, if we restrict ourselves to neurons with
SNR greater than 7, “high SNR,” the median false negative (i.e.,
missed spikes) classification error rate is 0.4% and the median
false positive (i.e., misclassified spikes or noise) error rate is
3.0%. The median aggregate classification error rate for the high
SNR neurons is 3.7%. While computationally intensive nonre-
altime spike sorting systems may be able to achieve marginally
better accuracy (for example, in cases in which errors are due to
overlapping spikes), we have found in practice that the perfor-
mance of the Sahani algorithm exceeds that of other real-time
spike sorting algorithms available to us.

In fact, the Sahani algorithm offers many advantages over
simpler real-time spike sorting algorithms. In comparing per-
formance with the much simpler -Means/PCA technique two
critical aspects are made apparent. By using cascading model
selection, the Sahani algorithm can typically determine the cor-
rect number of neurons on its own, which is a crucial feature
of any unsupervised spike sorting algorithm. Furthermore, the
mixing model approach provides a well founded technique for
rejecting threshold-crossing events which do not actually corre-
spond to neural spikes. As shown in Fig. 6, the lack of these two
capabilities, as in the simple -Means/PCA algorithm, is quite
detrimental. Even at high SNR, the lack of automatic model se-
lection results in many neurons being misclassified entirely, as
denoted by the hollow circles. However, even if totally misclas-
sified neurons, defined as missing more than half of the synthe-
sized spikes, are excluded, for the remainder of the high SNR
class, the aggregate median error rate rises to 20%. In addition
to numerous noise-events, high SNR units are often present on
the same electrode as other units (24 electrodes of 96). Thus,
these deficiencies would also be a significant problem for a
spike-sorting strategy which simply accepts all waveforms that
cross threshold.
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Fig. 7. Peak alignment and error rate. Using the synthetic data set, we
evaluated the effect of peak alignment on the error rate of the Sahani algorithm.
For neurons with SNR greater than 7, the median difference was 0.4%.

In situations in which many neurons are detectable by a given
electrode, there is an additional advantage to using the Sahani
algorithm. By projecting the data in the whitened noise principal
component space, the Sahani algorithm maximizes the sepa-
rability of the clusters. In other words, this projection has the
greatest ratio of the average distance between clusters to the
average spread of the data. It is, therefore, possible to sepa-
rate clusters that would be indistinguishable in regular principal
component analysis [7].

One of the critical observations that was gleaned from our
simulations is that the computationally intensive interpolation
used for peak alignment during real-time classification offers
modest benefit. As shown in Fig. 7, at higher SNR, there is
sometimes a noticeable difference: the median increase in error
rate for high SNR neurons 0.4% (median error rate increases to
4.3%). However, eliminating interpolation during real-time op-
eration nearly halves real-time power consumption. This is one
example where performance/power analyzes can unveil impor-
tant design tradeoffs.

V. DISCUSSION

We have shown that currently available spike sorting al-
gorithms can be both reliable and power efficient. With 100
electrodes, an upper bound of the power consumption of our
spike sorting algorithm (without interpolation during real-time
operation) is about 150 . Also, we have shown that the one
hundred 8-bit, 30-kHz ADC needed for digital spike sorting
are expected to consume less than 100 of power. Thus,
250 is an achievable level of power consumption for an
implantable, 100 electrode digital spike sorting circuit. As-
suming heat dissipation over a 16 mm chip, we have a power
to area ratio of about 1.6 cm , which is well below the 80

cm chronic heat dissipation threshold believed to cause
tissue damage [17]. By way of comparison, for 100 electrodes,
the all-analog approach of [3] would require 5.7 mW, and the
wavelet compression technique of [4] 120 mW. While these
alternative approaches may benefit from voltage scaling, their
respective drawbacks, a loss of information and less than ideal
data compression, remain significant when compared with an
implantable spike sorting paradigm. Furthermore, we have not
considered the requisite low-noise amplifier in this report as all
approaches to spike sorting require their use, and because recent

reports have demonstrated low power ( W per channel)
and noise ( ) levels [14], [18].

In addition, we have found that the high pass filter stage domi-
nates power consumption. Alternative methods of multichannel
filtering for spike sorting should be investigated to further re-
duce the power consumption and improve performance as the
number of available electrodes expands.

VI. CONCLUSION

We have shown that digital spike sorting is feasible using
currently available algorithms and technology. As a result of
the efficiency of low-power digital CMOS, digital spike sorting
can, in fact, be achieved without significant increases in power
when compared with simpler techniques. Furthermore, by using
a very effective spike sorting algorithm, we can achieve data
bandwidths comparable to those of a simple threshold-detector,
while retaining essentially all the information content of the
original, high-bandwidth signal. Thus, as implantable electrode
arrays grow in density, we believe that the on-chip spike sorting
approach will be a viable and attractive solution for neural pros-
thetic interfaces.
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